.

Wednesday, March 27, 2019

Revolutionary QM212 :: science

revolutionary QM212Abstract A new process in bio-chemistry involves the manipulation of molecules to drink down diseases, viruses, chemical warfare, and to reduce the cost of bio-chemical engineering. This new process is refined in that the researcher utilizes new computer technology to model the behavior of accredited molecules to insert a expansion slot for discarding unwanted abroad objects. These unwanted foreign objects are discarded by fixing the slot to fit the objects. This slot can be customized, through manipulation and modelling, to fit many various objects. Therefore, objects such as viruses, poisonings, or bacteria, could be jetted out of ones system. This aspect could one day benefit millions of people around the world. Chemical Process Teams from universities successfully inserted instructions for building an anti-fluorescein antibody in the DNA of bacteria. This antibody binds with fluorescein molecules. Into this chunk of material, they inserted instructions for buildin g a metal-ion binding sight. They discovered where to put this slot by simulating the antibody on a large computer. The resulting product revealed an anti-fluorescein antibody which binds to metal ions. After physically inserting the genetic code in to E. coli. bacteria, the researchers had a large batch of a new compound which they named QM212. When copper was added to this new batch, it binded with the metal-ion binding sight, decreasing the fluorescent fixture emissions. Applications The human immune system already uses similar antibodies for similar tasks. vivid antibodies conform to the shape of foreign bodies and bind to the outer surface. They then unload enzymes to break down the substance. In the experiment, c opper acted as the foreign body while QM212 was the antibody. One application of this process could be used by the military. The military, utilizing bio-chemical tools, could engineer an antibody which binds with nerve gas and splits each molecule. This could be accomplished by first of all searching t he Brookhaven database for a prudish antibody. Then, using large mainframe computers, one can manipulate models of the antibody and bring to pass a binding sight for the nerve gas molecules. Then, the soldier would set up himself with the antibodies when h e is nerve gased. Another application of this process could be used by bio chemists in fighting the aid epidemic. If an antibody was engineered to conform to the AIDS virus, it could break it in half and dispose of it. Finally, using E. coli., synthetic antibodies alternate current vaccines could be mass produced.

No comments:

Post a Comment